ON LINEAR VOLTERRA DIFFERENCE EQUATIONS WITH
INFINITE DELAY

CH. G. PHILOS AND I. K. PURNARAS

ABSTRACT. Linear neutral, and especially non-neutral, Volterra difference equa-
tions with infinite delay are considered and some new results on the behavior
of solutions are established. The results are obtained by the use of appropriate
positive roots of the corresponding characteristic equation.

1. PRELIMINARY NOTES

Motivated by the old but significant papers by Driver [3] and Driver, Sasser
and Slater [5], a number of relevant papers has recently appeared in the literature.
See Frasson and Verduyn Lunel [10], Graef and Qian [11], Kordonis, Niyianni and
Philos [16], Kordonis and Philos [18], Kordonis, Philos and Purnaras [21], Philos
[27], and Philos and Purnaras [28, 29, 33, 35, 36]. The results in [10, 11, 16, 27, 28,
29, 33, 35] concern the large time behavior of the solutions of several classes of linear
autonomous or periodic delay or neutral delay differential equations, while those
in [18, 21, 36] are dealing with the behavior of solutions of some linear (neutral
or non-neutral) integrodifferential equations with unbounded delay. Note that the
method used in [10] is based on resolvent computations and Dunford calculus, while
the technique applied in the rest of the papers mentioned above is very simple and
is essentially based on elementary calculus. We also notice that the article [10] is
very interesting as well as comprehensive.

Along with the work mentioned above for the continuous case, analogous inves-
tigations have recently been made for the behavior of the solutions of some classes
of linear autonomous or periodic delay or neutral delay difference equations, for the
behavior of the solutions of certain linear delay difference equations with continu-
ous variable as well as for the behavior of solutions of a linear Volterra difference
equation with infinite delay. See Kordonis and Philos [19], Kordonis, Philos and
Purnaras [20], and Philos and Purnaras [30, 31, 32, 34]. For some related results
we refer to the papers by De Bruijn [2], Driver, Ladas and Vlahos [4], Gyori [12],
Nortis [25], and Pituk [37, 38].

In [21], Kordonis, Philos and Purnaras obtained some results on the behavior of
solutions of linear neutral integrodifferential equations with unbounded delay; the
results in (21] extend and improve previous ones given by Kordonis and Philos [18]
for the special case of (non-neutral) integrodifferential equations with unbounded
delay. In [36], Philos and Purnaras continued the study in [18, 21] and established
some further results on the behavior of solutions of linear neutral integrodifferential
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equations with unbounded delay, and, especially, of linear (non-neutral) integrod-
ifferential equations with unbounded delay.

Our purpose in this paper is to give the discrete analogues of the results in [18,
21, 36]. Here, we study the behavior of solutions of linear neutral Volterra differ-
ence equations with infinite delay, and, especially, of linear (non-neutral) Volterra
difference equations with infinite delay. Our results will be derived by the use of
appropriate positive roots of the corresponding characteristic equation. Some of the
results of the present paper extend and improve the main results of the authors’
previous paper [31].

Neutral, and especially non-neutral, Volterra difference equations with infinite
delay have been widely used as mathematical models in mathematical ecology,
particularly in population dynamics. Although the bibliography on Volterra inte-
grodifferential equations is quite extended, however there has not yet been anal-
ogously much work on the Volterra difference equations. We choose to refer here
to the papers by Jaro$ and Stavroulakis [13], Kiventidis [15], Kordonis and Philos
(17], Ladas, Philos and Sficas [22], and Philos [26] for some results concerning the
existence and/or the nonexistence of positive solutions of certain linear Volterra
difference equations. Also, for some results on the stability of Volterra difference
equations, we typically refer to the papers by Elaydi [6, 7], and Elaydi and Mu-
rakami [9] (see, also, the book [8, pp. 239—250]).

For the general background of difference equations, one can refer to the books by
Agarwal [1], Elaydi [8], Kelley and Peterson [14], Lakshmikantham and Trigiante
[23], Mickens [24], and Sharkovsky, Maistrenko and Romanenko [39).

The paper is organized as follows. Section 2 contains an introduction and some
notations. Section 3 is devoted to the statement of the main results (and to some
comments on them). The proofs of the main results will be given in Section 4.

2. INTRODUCTION AND NOTATIONS

Throughout the paper, N stands for the set of all nonnegative integers and Z
stands for the set of all integers. Also, the set of all nonpositive integers will be
denoted by Z~. Moreover, the forward difference operator A will be considered to
be defined as usual, i.e.

Asp =841 — 85, nEN

for any sequence (s, ),en of real numbers.
Consider the linear neutral Volterra difference equation with infinite delay

n—1 n—1
(E) A (x,,,+ > Gn_jxj) =atn+ Y Kn_j3;

j=—co
and, especially, the linear (non-neutral) Volterra difference equation with infinite
delay
n—1

(Eo) Az, = az, + Z Kn_jﬂfj,

J=—0c0
where a is a real number, and (Gr)nen—{0y and (Kn)nen—{0} are sequences of
real numbers. It will be supposed that (Kn)nen—{o0} s not eventually identically
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zero. Note that (Ep) is a special case of (E), i.e. the special case where the kernel
(Grn)nen—{o} is identically zero.
Equation (E) can equivalently be written as follows

oo oo
A (xn + Zijn_J‘) =azxr, + ZKjxn-j

=1 J=1

and, especially, (Ep) can equivalently be written as

[o o]
Az, = az, + Zszn_J’.
i=1
By a solution of the neutral Volterra difference equation (E) (respectively, of the
(non-neutral) Volterra difference equation (Eo)), we mean a sequence (Tn)necz of
real numbers which satisfies (E) (resp., (Eg)) for all n € N.
In the sequel, by S we will denote the (nonempty) set of all sequences ¢ =
(¢n)nez- of real numbers such that, for each n € N,

—i. co -1 o=}
o¢ = Z Gn_jp; = Z Gj¢n—; and o = Z Kn—i¢; = Z Kibn_j

j=—0 j=n+1 j=—co j=n+1

exist in R. In the special case of (Eo), the set S consists of all sequences ¢ =
(¢r)nez- of real numbers such that, for each n € N, ®X exists in R.

It is clear that, for any given initial sequence ¢ = (¢n)necz- in S, there exists
a unique solution (z,)necz of the difference equation (E) (resp., of (Ep)) which
satisfies the initial condition

(®)] T, =¢, forneZ;

this solution (2, )z is said to be the solution of the initial problem (E)—(C) (zesp.,
of the initial problem (Eg)—(C)) or, more briefly, the solution of (E)—(C) (resp., of
(Eo)—(C))-

With the neutral Volterra difference equation (E) we associate its characteristic
equation

(%) (A-1) (1 +§:A-J'Gj) =a+i,\--ff{j,
i=1

3=1

which is obtained by seeking solutions of (E) of the form z, = A" for n € Z,
where A is a positive real number. In particular, the characteristic equation of the
(non-neutral) Volterra difference equation (Eo) is

(*)o A—1=a+ZA'jKj.

J=1

The use of a positive root Ag of the characteristic equation (*) with the property

(P()) N (1 %
=1

i 1o ;.
1-1)3) Gl + 35 23731051 < 1
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plays a crucial role in obtaining the results of this paper. In the special case of the
(non-neutral) Volterra difference equation (Eqg), the property (P()o)) (of a positive
root Ag of the characteristic equation (x)g) takes the form

(Po(M)) L NTilI <1
j=1

In what follows, if Ag is a positive root of (*) (resp., of (*)o) with the prop-
erty (P(Xo)) (resp., with the property (Po()p))), we shall denote by S()\o) the
(nonempty) subset of S consisting of all sequences ¢ = (#n)nez- in S such that
(Ao nén)nez— is a bounded sequence.

Now, we introduce certain notations which will be used throughout the paper
without any further mention. We also give some facts concerning these notations
that we shall keep in mind in what follows.

Let Ao be a positive root of the characteristic equation (*) with the property
(P(Ao)). We define

= = =3 — _.....1_) '] E i - =4 A
(o) J.g;)\" [1 (1 SWL c:1+)\02f,_V::,\0 iK;
and
oo i 1 ; 1 oo o
woa) =357 1+ - )65+ 5 D1

Property (P(Ag)) together with the hypothesis that (Kn)neN—{0} is not eventually
identically zero guarantee that

0< }L(Ao) <1
Also, because of |7(Ag)| < p(Ao), we have —1 < y(Xo) < 1, i.e.
0<I4+v(N)<2

In the particular case where (Gr)nen—{o} and (K7)nen—{o} are nonpositive and
Ap is less than or equal to 1, because of the fact that (K )nen—{o0} is not eventually
identically zero, the property (P()g)) can be written as —1 < (o) < 0, i.e.

0<1+4+9(X) <1
Furthermore, we set

_ [ +p0o)?
We can easily see that ©()\g) is a real number with
O(Xo) > 1.

Let us consider the special case of the (non-neutral) Volterra difference equation
(Eo) and let Ao be a positive oot of the characteristic equation (¥)o with the
property (Po(Mo)). In this case, we define

1 o= ;.
Yo(ho) = e > N7IK;

i=1
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and
1=~ ;.
uo(Ao)=3—0j§An 71K;l.

From the property (Po())) and the hypothesis that (K7)neN-—{o} is not eventually
identically zero it follows that

0 < po(ho) < 1.
So, since |79(Ao)| < po(Xo), we have —1 < Yo(Ao) < 1, namely
0<1+7(N)<2
If (Kn)neN_{o} is assumed to be nonpositive, then, by the fact that (Kn)nEN-{D}
is not eventually identically zero, the property (Po(Xo)) is equivalent to —1 <
Yo(d) <0, ie.
0<1 +’}’0(/\0) <1
Furthermore, we put
14 2
Saide) = [1 +?o(&)}
and we see that ©y()\g) is a real number with
eg(r\o) il

We notice that, in the special case of (Ep), the constants 7(X0), £(Ao) and O(Xg),
which are defined in the general case of (E), are equal to Yo(R0), £29(Ao) and Gp(N),
respectively.

Next, consider again a positive root Ay of the characteristic equation (*) with
the property (P(Xo)), and let ¢ = (¢, )ncz- be an initial sequence in S()\g). We
define

+ p1o(Xo)

L0ud) = 40436 [qb_j - (1- %) ¥ ( ) Aa’"@)]

=1 r=—j
1 oo » =1 .
+A_O§,\03Kj (r;j»\o @)
and
- 6) = —ny _ L0:9)
Mind)= =2 o™~ TGl

From the property (P()\¢)) and the definition of S(Xo) it follows that L(Ag;¢) is
a real number. Moreover, by the definition of S(2), M(Xo; ¢) is a nonnegative
constant.

Let us concentrate on the special case of the equation (Eo) and consider a positive
root Ag of the characteristic equation (%)o with the property (Po(Ap)) and an initial
sequence ¢ = (@, )nez- in S(Ao). In this special case, we have the constants

oo -1
Lo(X0; ¢) = ¢ + % D> NEK; ( > Ao"qsr)

=1 r=—j
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and

N - Lo(Mo; 4)
MO()‘O-r ¢) nset"lzp— ACl qsn 1_}_70(%)
instead of the constants L(Xo;$) and M()o; $) considered in the general case of
the equation (E). Property (Po(Ao)) and the definition of S(Ag) guarantee that
Lo(Ao; ¢) is a real number, and the definition of S()\g) ensures that Mo(Ao; @) is a
nonnegative constant.
Another notation used in the paper is the following one
N(Xo;¢) = sup (Ag™ ¢n[)
neZ~
for each positive root Ao of the characteristic equation (x) (resp., (x)o) with the
property (P(Xo)) (resp., (Po(Xo))) and for any initial sequence ¢ = (¢, )nez— in
S(Ao). Clearly, N()\o; #) is a nonnegative constant.
Furthermore, let Ag be a positive root of the characteristic equation (%) with
the property (P(\o)) and A; be a positive root of (¥) with A; < ). Let also
¢ = (¢n)nez- be an initial sequence in S()\g). We set

U, X1;9) = inf {"T" [‘f’n - %%%Ag]}

and

5 _ -n _ L(A0;¢) n
V(AO$A1!¢) uSEuZPl {Al [¢n 1 +7(/\0) j[ } -
From the definition of S(\o) and the hypothesis that A\; < Ag it follows that
U(Xo, A1;¢) and V (Ao, A1; @) are real constants.

In particular, consider the special case of (Eg). Let Ao be a positive root of the
characteristic equation (*)o with the property (Po()\o)) and X; be a positive Toot
of (¥)o with A1 < Ag as well as let ¢ = (¢,.)ncz- be an initial sequence in S(Xo)-
In this special case, we consider the real constants

Uo(Xo; A5¢) = inf {'\I_n [¢ﬂ - %%‘f.(%)\g] }

and

- Lo(Mo; 8) ]}
Vo(ho, M5 ¢) = su )\“[n——“
O(AG 1 ¢) nezp_{ 1 ¢ 1+']’0(AD)

in place of U(Ag, A1; @) and V(Ag, A1;$) considered in the general case of (E).

Before closing this section, we will give two well-known definitions. The trivial
solution of (E) (resp., of (Eo)) is said to be stable (at 0) if, for each € > 0, there
exists § = 6(¢) > 0 such that, for any ¢ = (¢,)nez- in S with ||¢|| = sup l¢,] < 8,

=

ne
the solution (zn)nez of (E)—(C) (resp., of (Eo)—(C)) satisfies |z,| < € for all n € Z.
Also, the trivial solution of (E) (resp., of (Eo)) is called asymptotically stable (at
0) if it is stable (at 0) in the above sense and, in addition, there exists 8¢ > 0 such
that, for any ¢ = (¢,)nez- In S with ||¢|| < do, the solution (z,)nez of (E)-(C)
(resp., of (Eq)—(C)) satisfies n]}'_)lr.}o:z:n = 0. Moreover, the trivial solution of (E)
(resp., of (Eo)) is called ezponentially stable (at 0) if there exist positive constants
A and n < 1 such that, for any ¢ = (¢, )nez- in S with ||¢|| < oo, the solution
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(Zn)nez of (E)—(C) (resp., of (Eo)—(C)) satisfies [zn| < An™ ||@|| for all n € N (see
Elaydi and Murakami [9]).

3. STATEMENT OF THE MAIN RESULTS

Our first main result is Theorem 1 below, which establishes a useful inequality
for solutions of the neutral Volterra difference equation (E). The application of
Theorem 1 to the special case of the (non-neutral) Volterra difference equation
(Eo) leads to Theorem 2 below.

Theorem 1. Let A be a positive oot of the characteristic equation (*) with

the property (P(X\o)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (Tn)nez
of (E)—(C) satisfies

_ L0 |

T+0g) | = HOIMOoi¢) forallneN.

Ao "Tn

Theorem 2. Let Ay be a positive Toot of the characteristic equation (x)g with
the property (Po(Xo)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (z,)nez
of (Eo)—(C) satisfies
’\O_nxn _ LO(’\O; 4{))

1+ 7o00) | = #0(20)Mo(Ao;¢) for alln € N.

Theorem 3 below provides an estimate of solutions of the neutral Volterra differ-
ence equation (E) that leads to a stability criterion for the trivial solution of (E).
By applying Theorem 3 to the special case of the (non-neutral) Volterra difference
equation (Eg), one can be led to the subsequent theorem, i.e. Theorem 4.

Theorem 3. Let Ao be a positive root of the characteristic equation (%) with
the property (P(Xo)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (Zn)nez
of (E)—(C) satisfies

|Zzn| < B(A0)N(No; $)AG  for all n € N.
Moreover, the trivial solution of (E) is stable (at 0) if Mo = 1 and it is asymptoti-
cally stable (at 0) if Ao < 1. In addition, the trivial solution of (E) is exzponentially
stable (at 0) if Ag < 1.

Theorem 4. Let Ay be a positive root of the characteristic equation ()o with
the property (Po(Xo)). Then, for any ¢ = (Pn)nez- in S(Xo), the solution (z,)ncz
of (Eo)—(C) satisfies

2] < Bo(Ao)N(Ao; $)AG  for all n € N.

Moreover, the trivial solution of (Ey) is stable (at 0) if Ao =1 and it is asymptoti-
cally stable (at 0) if Ao < 1. In addition, the trivial solution of (Eo) is ezponentially
stable (at 0) if A\g < 1.

It must be noted that Theorems 2 and 4 for the (non-neutral) Volterra difference
equation (Eg) can be considered as substiantally improved versions of the main
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results of the previous authors’ paper [31]. One can easily see the connection
between Theorems 2 and 4, and the main results in [31].

The following lemma, i.e. Lemma 1, gives sufficient conditions for the charac-
teristic equation (+) to have a (unique) root Ag with the property (P()\o)). The
specialization of Lemma 1 to the special case of the characteristic equation (x)o
is formulated below as Lemma 2. We notice that Lemma 2 has been previously
proved in the authors’ paper [31].

Lemma 1. Assume that there erists a positive real number vy such that

[o o] oo
(Hy) Z"y_j |Gj| < o0 and Z'y_j |K;| < o0,
j=1 i=1
m . m -
(Hy) A-ND 776G+ 7 K;>v-1-a
j=1 i=1
and
[o o] i 1 1 o o] .
(Hs) S [+ (143) 61+ 2 s <1
F=1 4 £ =1

Then, in the interval (v, c0), the characteristic equation (x) admits a unique root
Ao; this Toot has the property (P()g)).

Lemma 2. Assume that there exists a positive real number ~ such that

(Hi)o bl Y e
=1

(H2)0 Z'y*jKj>'y—1—a

i=1

and
L= .

(Hz)o =Y vijlKi <1,
i 4 )

Then, in the interval (7, c0), the characteristic equation (x)o admits a unique
To0t Xo; this root has the property (Po(Xg)).

Theorem 5 and Corollary 1 below concern the behavior of solutions of the neutral
Volterra difference equation (E), while Theorem 6 and Corollary 2 below are dealing
with the behavior of solutions of the (non-neutral) Volterra difference equation (Eyp).

Theorem 5. Suppose that (Gn)nen—qo} and (Kn)nen—{0} are nonpositive.
Let Ag be a positive root of the characteristic equation (+) with Ag < 1 and with the
property (P(Xo)). Let also Ay be a positive oot of () with \; < Xo. Then, for any
® = (¢n)nez- in S(Xo), the solution (Tn)ncz of (E)—(C) satisfies

L(Xo; ¢)

U0, A3 4) < AT™ [""“ T 1+9(0)

)\3’] <V(Ao, M1;9) forall n e N.
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We immediately observe that the double inequality in the conclusion of Theorem
5 can equivalently be written as follows

A\™ - L(Xo; AR
U(Xo, A159) (-)i-) o e T—i(-_,\—;)(% < V(Ao, A1;9) (-5\%) for n € N.

Consequently, since A; < Ag, we obtain
- y=n \_ L(o;9)
nli»ngo (AO In) 1 +v(Xo)’
which establishes the following corollary.

Corollary 1. Suppose that (Gn)nen-{o} and (K#)nen—{0} are nonpositive.
Let g be a positive root of the characteristic equation (%) with Ao < 1 and with the
property (P(A)). Assume that (*) has another positive root less than Ao- Then, for
any ¢ = ($p)nez- in S(Xo), the solution (zn)nez of (E)—(C) satisfies

! —a,_ y\ _ L(ho; 9)
A, (5720) = 2060y

Theorem 6. Suppose that (Kn)nen_{u} s nonpositive. Let Ay be a positive
To0t of the characteristic equation (x)o with the property (Po(Ao)). Let also \q be
a positive Toot of (x)o with Ay < Ag. Then, for any ¢ = (Dn)nez- in S(Xo), the
solution (Zn)nez of (Eo)—(C) satisfies

Uo(ho, Mi¢) < A7™ [:cﬂ _ LoQeid)

1 +’Yo(r\0))\3] < Vo(ho,A134) forall neN.

We see that the double inequality in the conclusion of Theorem 6 is equivalently
written as

Bl Xz ) (i‘_;) <Az, — 1%%(1% < Vo(Ro, Ais 6) (%) forn e N.

So, as A; < A, we have

. e Lo(Xo; ¢)
Iim (Ag"z,) = ——2 72,
n—oo ( 9 ) 1+ '70()*0)
This proves the following corollary.

Corollary 2. Suppose that (Kn)nEN-—{O} s nonpositive. Let Ay be a positive
700t of the characteristic equation (x)o with the property (Po(Ao))- Assume that
(*)o has another positive root less than M. Then, for any ¢ = (¢,,)nez- in S(Do),
the solution (Zn)nez of (Eo)—(C) satisfies

. —n_ \ _ Lo(Xo;¢)
A, 8 ) = T 0o

Now, we state two propositions (Propositions 1 and 2) as well as two lemmas
(Lemmas 3 and 4). Proposition 1 and Lemma 3 give some useful information about
the positive roots of the characteristic equation (*), while Proposition 2 and Lemma
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4 are concerned with the special case of the positive roots of the characteristic
equation (x)g.

Proposition 1. Suppose that (G’,,),,EN_{D} and (Kn)neN—{o} are nonpositive.
Let Ao be a positive Toot of the characteristic equation (*) with Ao < 1. If there
exists another positive root A; of () with Ay < A such that

(Q(\)) D A7IG <00 and 3" ATjIKG| < oo,
=1 =1

then Ao has the property (P(A)).

Proposition 2. Suppose that (Kn)neN—{0} is nonpositive. Let Ao be a positive
root of the characteristic equation (x)o. If there exists another positive oot Ay of
(*x)o with \; < Ag such that

(Qo(A1)) D AT IKS] < oo,

=1

then Ao has the property (Po(Ag)).

Lemma 3. Suppose that (Gn)nen—jo} and (En)nen—{o} are nonpositive.
(I) If a=0, then A =1 is not a root of the characteristic equation (*).
(II) Assume that a = 0 and that

(Ha) Yolej<1.

=1

Then, in the interval (1,00), the characteristic equation (%) has no roots.
(III) Assume that

(Hs) > 3lGs] < o0,
Jj=1
(He) DolGi+Y ik <1
=1 i=1
and
(H7) > Ik > a
j=1

Then, in the interval (1,00), the characteristic equation (*) has no roots.
(IV) Assume that (Hy) holds, and let there ezist a positive real number v with
v<1and vy<a+1 so that

oo o0
(Hs) Z’Y_jj |IGjl < oo and Z'y"jj |K;| < o0
J=1 =1
and
oo X oo .
(Ho) A= 771G+ v K| >a+1—1.

i=1 =1



VOLTERRA DIFFERENCE EQUATIONS WITH INFINITE DELAY 51

Moreover, assume that there ezists a real number & with § > 0 and a < § < a+1l—7y
such that

(Hyo) 6-a)) (@+1-6)77|G;| + Y a+1-6)77|K;| <.
=1 =1

Then: () A=a+ 1§ is not a root of the characteristic equation (%). (@) A=~
is ot a oot of (x). (iii) In the interval (a+1— 6,1], (x) has a unigue root. (iv)
In the interval (yv,a+1—§), (*) has a unique root. (Note: We have § > 0 and
Y<a+1l-46<1)

Lemma 4. Suppose that (Kn)nEN_{g} is nonpositive.

(I) @ > —1is a necessary condition for the characteristic equation (x)o to have
at least one positive Toot.

(IT) The characteristic equation (*)o has no positive roots greater than or equal
to a+1.

(III) Let a > —1 and let there exist a positive real number v with vy < a+ 1 so
that

(Hs)o > v ilKj < o0
=1
and
i -
(Ho)o Y v IIK| >a+1-1.
j=1

Moreover, assume that there exists a real number & with 0 < & < a + 1 — -y such
that

(Hio)o Z(a +1-6)77|K;| < 6.

=1

Then: (i) A =a+1—46 is not a root of the characteristic equation (*)o- (i) A=+
is not a oot of (x)o. (iil) In the interval (a + 1 — §,a + 1), (x)o has a unique
root. (iv) In the interval (y,a+ 1 — §), (*)o has a unigue root. (Note: We have
7<a+l-46<a+1)

It is an open problem to examine if Theorem 5, Corollary 1 and Proposition 1
remain valid without the restriction that the root Ap of the characteristic equation
(*) satisfies Ag < 1. Such a restriction is not a necessity in the non-neutral case
(i.e., in Theorem 6, Corollary 2 and Proposition 2%

Our main results can be extended to the more general case of the linear neutral
Volterra-delay difference equation with infinite delay

oo n—1 co n—1
Az, + Zc;znum. + Z Gn_jz; | =axn + Eb,—:cn_n + Z K, jz;

i=1 j=—o0 i=1 j=—o0
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and, especially, of the linear neutral Volterra-delay difference equation with infinite
delay

co n—1
Az, = az, + E biTn—r, + E K,_;zj,
i=1 Jj=—o0c

where ¢; and b; (i = 1,2,...) are real numbers, and o; and 7; (i = 1,2, ...) are
positive integers with 0, # 03, and 75, # 7i, (81,42 = 1,2,...; i1 # 4a).

The neutral Volterra difference equation with infinite delay (E) can be consid-
ered as the discrete version of the neutral Volterra integrodifferential equation with
unbounded delay

(B) [a:(t) + f_ ; G(t - s):z:(s)ds], = az(t) + f_ ; K(t — s)z(s)ds,

where a is a real number, G and K are continuous real-valued functions on the
interval [0, 0), and K is assumed to be not eventually identically zero. In particular,
the (non-neutral) Volterra difference equation with infinite delay (Eq) can be viewed
as the discrete version of the (non-neutral) Volterra integrodifferential equation with
unbounded delay

(Bo) 7'(t) = az(t) + f_ t K(t — s)z(s)ds.

The results obtained in this paper should be looked upon as the discrete analogues
of the ones given by Kordonis and Philos [18], Kordonis, Philos and Purnaras [21],
and Philos and Purnaras [36], for the neutral Volterra integrodifferential equation
with unbounded delay (E) and, especially, for the (non-neutral) Volterra integrod-
ifferential equation with unbounded delay (Eo).

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let ¢ = (¢,)nez- be an initial sequence in S()g), and
(zn)nez be the solution of (E)—(C).
Define

Yn=2Ag zn, formelZ.

Then, for each n € N, we obtain

n—1 n—1
A (:rn+ Z Gn_jasj) —az, — Z Kyizs

Jj=—o0 j=—00
oo oo
= Alz,+ ZGjIn_j — ATy — ZKjIn_j
=1 =1

=1

oo co
= A [Ag (yn + ZA(TJGjyn—j)} = GAgyn - Ag ZAEJijn_J'
3=1
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= 38 [)\oA (yn +3 N7 Gjyn—j) +(o—1) (yn +) a7 Gjyn~j)

=1 i=1

oo
—QYn — Z A(-)_JI{,:r‘y'n,—_g:I

i=1

i=1

= X [AoA (yn +3 257 G:iyn—j) + (o - 1—a)yn

+o—1) Y A7Gpy =Y Ay jijn—:}

i=1 j=1

= X3 [ADA (y +Zxajejyn_j) — (o —1) (Z Wj) Yn

j=1 i=1

+ (Z AJ"K,-) ¥t (R0 —1) Y N7 Giyn_j - ZAajijn_jJ
j=1

g1 =1

=1

= X leA (y +> A;"G,-yn-j) ~ o =1) Y A57G; (yn — yny)
j=1
+Y XK (yn — yw-)] :
j=1

So, (Zx)nez satisfies (E) for n € N if and only if (Yn )nez satisfies

(4.1) A (yn + ZAajGjyn——j) = (1 — %) ZAq)_jGj (yn = yn—j)
i=1 j=1

1 o=, _;
-—A—OZ)\OJKj(yn—yn_j) for n € N.
=

Moreover, the initial condition (C) can equivalently be written as
(4.2) Yn=X "¢, forneZ .
Furthermore, we see that (4.1) becomes

o0 oo n—1
2 (wzm-yn_j) = (1-%) o xiea ( > )
=1

j=1 T=n—j

] n—1
“%ZWK:‘A (,Z y)

=1 =n—j

53
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_ A{(g)zm(z)

r=n—j

for n € N. Thus, we have

oo oo n—1
Unt+ D N7 Cjyn—j = (1 - -;-5) pprader ( > y,-)

F=1 =1 r=n—j
1 oo . n—1
% YONTK Y w44
i=1 r=n—j
for every n € N, where
[==] -1
A= (w6 | - (1- —) S 3596 [ 3w
=1 Jj=1 r=—j
1 oo
+A_OZAOJK (r_Z—JyT)-

But, by using (4.2) and taking into account the definition of L(Ag;¢), we can
immediately verify that A = L(Ag;¢). Hence, (4.1) takes the following equivalent
form

43) yn+§:)\ﬁj3jyn—j = (1 — —) Z/\OJG ( nf y)

j=1 r='n_—j
n—1
A_JK | + L(Ao; forn € N.
"% ; r;n_jy (Ao; #)
Next, we set
L(Xo; 9)
Zp =Ynp — ——— forneZ.

¥ T ()

Then, we take into account the definition of y()\g) to show that (4.3) may equiva-
lently be written as follows

(4.4) zn+Z)\0 azn—a—(l——)Z’\cT"G (nzl )

r=n—j

0 n—1
—%ZA;J'KJ— ( Z z,.) forn € N.

r=n—j
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On the other hand, the initial condition (4.2) becomes
L(Xo; ¢)
1+7(o)

Now, by taking into account the definitions of (¥a)nez and (2,)nez, we conclude
that what we have to prove is that (2n)nez satisfies

(4.6) |20l < #(A0)M(R0;¢) for all m € N.

In the rest of the proof we will establish (4.6). From (4.5) and the definition of
M(Xo; @) it follows that

(4-5) Zn =Xy ", — forneZ~.

4.7 |zn| < M(Xo;¢) forn e Z.
We will show that
(4.8) |za] < M(Ao; ) for all n e Z.

For this purpose, let us consider an arbitrary real number € > 0. Then (4.7
guarantees that

(4.9) [za] < M(Xo;¢) +€ forneZ™.
We claim that
(4.10) |zn] < M(Xo;¢) +€ for every n € Z.

Otherwise, because of (4.9), there exists an integer ng > 0 so that
[zn| < M(Xo;¢) +€ forneZ withn <ng—1
and
|2no| = M(Xo; $) + €.

Then, by taking into account the definition of #(Ao) and the fact that 0 < u(Xg) < 1,
from (4.4) we obtain

M(Ao;0) + €
[oe] » 1 o0 . ng—1
< lonal < 3057 Gyl ol + 1= SN IGH [ 3
=1 0= r=no—j
1 [se] ] no—1
+;;Z)\EJIK:;| >
j=l ‘rzno—j
<

{f 3 (14 1= ) 1651+ = 35 :K,-IJ [M(30;4) + o
=

j=1
= o) [M(Xo; 6) + €] < M(2o;9) +e.

This is a contradiction and consequently our claim is true, i.e., (4.10) holds true.
Since (4.10) is fulfilled for all numbers € > 0, we conclude that (4.8) is always
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satisfied. Finally, using (4.8) and taking again into account the definition of (o),
from (4.4) we derive, for every n € N,

oo . 1
el < SN 1G5 2mmg] + ‘1 %
>

) n—1
pp e ( 3 lzf|)
j=1

r=n-—j

1 o=, =
35 27 K] (,_Z |zr|)

Jj=1 =n—j

IA

Léw‘ (11 l) o+ 3, 00 IKJ-I} M0%:4)

#(20) M (Ao; )-

Consequently, (4.6) has been proved.
The proof of our theorem is complete.

Proof of Theorem 3. Consider an arbitrary initial sequence ¢ = (p)nez- in
S(Xo) and let (z2)nez be the solution of (E)—(C). Then, by Theorem 1, it holds

- L()o; ¢) )
Ay Tn — m < #(Ao)M(Ao;¢) forallm €N,
which leads to
357 bl < 28O 40)0 (039 for every n € N,
On the other hand, the definitions of M (\g; ¢) and N (Ao; @) give
. . |Z(Xo; 8)|
M(6;) < N(oi9) + 1 2.
Thus, we have
(4.11) A0 |zl < i—_t%% |Z(A0; @)| + (Ao)N (No; ¢) for n € N.

But, from the definition of L()o; ¢) it follows that

IZ(2o; 9)] 6ol + > 1G] []¢_j| + ’1 - :\1;

IA

i=1

o’ (gjj 2" |¢,|)J

0 =1
+30 207 1K (Z X |¢T|)
J=1 r=—j
-1
(Z‘Aa’ |¢T|)J Gl

i=1

oQ o e 1
= ol + -7 [Ao‘ ? |¢_J-l+{1-;5

oo -1

N ( 3 %" |¢,|) 15,

j=1 r=—3
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which, because of the definitions of N(\o; ¢) and £(Ao), yields
[L{Xo; #)]

1+ A7 (1 + ‘1 -~ ifj) G5 + —I—Zz\ajj I&;1| N(o; 6)
=1 AD A0_',1'=1

= [14 p(X)] N(Xo; ¢)-
This together with (4.11) give

2
25" |2l < {% +p(Ao)}N(A0;¢) forne N

and hence, by taking into account the definition of ©(Xo), we have

(4.12) |Z| < O(Ro)N(Mo; $)AT  for all n € N.

We have thus proved the first part of the theorem.

Next, we will establish the stability criterion contained in our theorem. Assume
that Ag < 1. Consider an arbitrary bounded initial sequence ¢ = (¢, )nez- in S
and define

IA

¢l = sup |g,].

neZ—

As Ao < 1, we immediately see that ¢ = (#n)nez- belongs to S(Ao) and, in addition,
that
(4.13) N(%oi9) < [4]]-
The solution (5 )nez of (E)—(C) satisfies (4.12). By combining (4.12) and (4.13),
we obtain
(4.14) [z < ©(Xo) |§]| A§  for every n € N.
Since Ag < 1, it follows from (4.14) that

|Za| < ©(20) [|4]] for any n € N.
Thus, as ©(Ag) > 1, we always have
(4.15) || < ©(Xo) ||@|| for all n € Z.

We have proved that, for any bounded initial sequence ¢ = (¢, )nez- in S, the
solution (z»)nez of (E)—(C) satisfies (4.14) and (4.15). From (4.15) it follows that
the trivial solution of (E) is stable (at 0), provided that Ao < 1. Finally, if Mg < 1,
then (4.14) ensures that

limz, =0

n—oo

and hence the trivial solution of (E) is asymptotically stable (at 0). Finally, if Ay <
1, then it follows from (4.14) that the trivial solution of (E) is also exponentially
stable (at 0).

The proof of the theorem has been finished.

Proof of Lemma 1. Assumption (H;) guarantees that

oo o0
Z/\_jIGj|<°O and Z)\*j!Kj[<oo, for all A >«

i=1 =1
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and hence the formula

F)=(A-1) (1 + irfc_.,-) —a— i/\_jKj for A > v

defines a continuous real-valued function on the interval [y,c0). From condition
(Hs) it follows that

(4.16) F(vy) <.
Furthermore, for each A > «, we obtain

i b\aler

=1

< YaTigl= 15 agy

=1 =1

1 oo ’Y oo
1y = X i,
& X;’Y TG = AZ’Y 71G;l

=1

and consequenly, by the first assumption of (H;), we have

oe .
lim A7G;=0.
A—r00 £
g=1
In a similar way, one can see that
hicd .
lim AT K;=0.
A—o0
=1
So, we immediately verify that
(4.17) F(o0) = oo.

Now, by using the hypothesis that (Kn)ﬂeN_{o} is not eventually identically zero
as well as condition (Hjz), we derive for A > v

— . [ 13 ] 1= _;
, _ ; i,
F(A) = 1+Z)\J lﬁ(l—X)J Gj“f'xZA J_?Kj
j=1 - - i=1
e [ 1) ] Ly i
2 1-3 % (143 a6l - 53 a5 K
i=1 . ) i=1
o __- 1 '- 1 oo o
> 1-377 1+ (14+3) 51631 - 2 051k
i=1 o - Jj=1
> 0,

which means that F' is strictly increasing on (v, o). This fact together with (4.16)
and (4.17) guarantee that, in the interval (v,00), the equation F(A) = 0 (i.e.,
the characteristic equation (+)) has a unique root Ag. Finally, by using again the
hypothesis that (K,)»en-{o} is not eventually identically zero as well as condition
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(Hz), we get
20 , 1 i & .

,\—J(1+[1-_'-)G-+_ 31K

;o |76l AO;)\OJIJI

20 . 1 i 2 .
X7 1+ (1+ +) j] 1Gil+ — 3 A3%5 K]
o 1% g

< 3oy [1+ (l+;)3} IGjI+;,Z'r 77 1Kl
j=1 Jj=1

2 i,

IA

59

So, the root Ag of the characteristic equation (*) has the property (P())). This

completes the proof of the lemma.

Proof of Theorem 5. Let ¢ = (¢,)nez- be an arbitrary initial sequence in
S(X), and (z,)nez be the solution of (E)—(C). Define (yn)nez and (za)nez as in
the proof of Theorem 1. As it has been shown in the proof of Theorem 1, the fact
that (25)ncz satisfies (E) for n € N is equivalent to the fact that (2n)nez satisfies

(4.4), while the initial condition (C) becomes (4.5). Furthermore, set

A1
Then it is easy to see that (4.4) can equivalently be written as follows

@18) wnt 3 AT Gpwn; = (1 -x) g;f\ajcj [ 3 (Aﬁ;) o er

=1 r=n—j

wy, = (ﬁ) z, fornelZ.

=1 =n—j

0 n—1 n—r
_%Z,\O—J‘Kj'rz (:\\—3) w,-J forn e N.

Moreover, the initial condition (4.5) is written in the following equivalent form

(4.19) Wy = A" [¢n - %‘% "} forneZ .

In view of the definitions of (Yn)nezs (2n)nez and (Wn)nez, we have

—-n L(’\O; ¢) n}
4.20 Wy = A Ly — —— forn e Z.
From (4.19) and the definitions of U()g, Ay; ¢) and V (A, A1; @) it follows that
U(Xo,A1;¢) = inf w, and V(Xo, A1;0) = sup ws.
sEZ— SEF~

So, by taking into account (4.20), we immediately conclude that all we have to

prove is that (wy,),cz satisfies

inf w; <w, < supw, for all n € N.
SEZ— sEZ-

We restrict ourselves to show that

(4.21) Wy, > mzf ws for every n € N.
sEd—
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In a similar manner, one can prove that

wn, < sup ws for every n € N.
SEZ-

In the rest of the proof we will establish (4.21). To this end, it suffices to show

that, for any real number D with D < inf w;, it holds
se€Z—

(4.22) wn, > D for alln € N.

Let us consider an arbitrary real number D with D < Slenf_ws Then we obviously
have

(4.23) wnp>D forneZ™.

Assume, for the sake of contradiction, that (4.22) fails. Then, because of (4. 23),
there exists an integer ng > 0 so that

w,>D forn€eZwithn<ng—1
and
W, < D.

Hence, by using the hypothesis that (G )nen— {0} and (Kn)nen—{o} are nonpositive
and that ( n)nEN_{g} is not eventually identically zero and taking into account
the assumption that Ag < 1, from (4.18) we obtain

D > = —Z,\ G jWno—j + (1 - —) ZAO—JG [ ni‘l (%’-)na_rwr}

=1 r=no—j

_ Aio i 2 K; {f (,\ﬁ)_ wf}

=no—j

i=1 (1__ Z/\E’GJ [j”i ( no_,}

\%
w]
/——‘h
M
27
Q
+

Il
,__/_\
M
2
.

0
+
e
|
&=
S——’
i [~]8
31
£
Mu
|&
b
| e |

| 2

f'--"\
IS’
l
|_|
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1 2 . .i-g'l: 1)j_1:'
g T S
—EE:A“ K; =5

~
G

r

3=1 j=1

S [)-1)
D

do— M {‘“"0 O Cam IR AT + 0o 1)3_2 (A -27) G

oo . co X 7
- /\B"_J/\l {—(AD-,\l)ZA;-?Gj+(A0—1)Z,\g-’aj K%‘l’-) -1J

53 (7 -7) K.-,-}

=1

D s i
Sl {{—(Ao—l);% Gi+ 2% K,]

- [—(Al ~1) fj»\;jGj + i)\;"&] }

D

Ao — A1
= D.

[Fo-1-a)- (A1 —1-0q)]

This contradiction shows that (4.22) holds true.
The proof of the theorem is now complete.

Proof of Theorem 6. First, let us notice that the main difference between the
neutral case and the non-neutral one is the existence (in the neutral case) of the
terms

i M Gijwn;

=1

(1-2) S, {z (A-a)}

i=1 =n—j

and

in (4.18), which do not appear in the non-neutral case. In the special case of the
(non-neutral) Volterra difference equation (Eq), (4.18) becomes

1 oo ) n—1 AO n—r
wn=_3\.5jz=;)\031{j Z ()\_1) wr| forneN.

r=n—j
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The need for assuming, in Theorem 5, that the root Ag of the characteristic equation
(*) is such that Ao < 1 is due only to the existence of the second of the above terms
in (4.18). After the above observations, we omit the proof of the theorem.

Proof of Proposition 1. Assume that there exists another positive root A; of the
characteristic equation (*) with A; < Ag such that (Q();)) holds. Clearly,

e ] oo
> A?G; and ) AUK; existinR.
So, since (Gr)nen—{o} and (Kn)nen—{0} are nonpositive, we must have

o0 o0
Y A7IGi <00 and YA |KG| < co.
i=1 j=1
(This fact can also be obtained from (Q();)).) This guarantees that

o0 oo
D A7|Gjl <o and Y XT|Kj| <o, forall A A
and consequently the formula

oo o0
F(A)=(‘\_1) 1+ZA_jGj _G—Z)\HjKj fOI'AzAl
j=1 j=1
defines a real-valued function F on the interval [\;, 00). It follows from assumption
(Q(A1)) that

o0 o0
> X 75|Gjl < oo and D> XTj|K; | <oo, forall A,
j=1 Jj=1

which ensures that F is differentiable on [A;, co) with

o0 o0

FiA) =1+ X7 [1 - (1 - %) j] G;+ ;z:xjjkj for A > A
j=1 j=1

Furthermore, by using the hypothesis that (Gr)nen—{0} and (Kn)nen—qo} are

nonpositive and (K»)nen—{o} is not eventually identically zero, it is not diffi-

cult to check that F” is strictly increasing on the interval [A;,1]. (We notice that

0<AM<XH<1)

Now, observe that F'(A;) = F(Ag) = 0, and so an application of Rolle’s theorem
ensures the existence of a real number £ with A; < £ < Ag so that F'(¢) = 0.
Since F" is strictly increasing on [, 1], it follows that F” is always positive on (&,1].
Hence, as £ < Ag < 1, we conclude, in particular, that F/()g) > 0, namely that

e 1Y) . 1 2
1+E AOJ [1_(1—36)3:[034_}_0 E AO‘?jKj>0.
j=1 3=1

By taking into account the fact that (Gp)nen—{0} and (Kn)nen—{o} are nonpositive
and that Ay < 1, we see that the last inequality can equivalently be written as

follows
oo

4 1]. 1 o= g
1= 357 (14 1= 5o |1) 1651- £ S x> o
Jj=1

i=1
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which means that Ao has the property (P()o)).
The proof of the proposition is complete.

Proof of Proposition 2. Let A; be a positive root of the characteristic equation
(*)o satisfying (Qo(\1)). Then it is obvious that

(o<}
ZAl_jKj exists as a real number
Jj=1

and consequently, as (K,),en-{o} is nonpositive, we have

&9 -
S AT K] < o0

=1
(Note that this fact is also a consequence of (Q (A1))-) Therefore,

(o ]
Y AT IK | <o forall A> )

i=1
and so we can define the real-valued function Fy on the interval [A1, 00) by

FoM)=A—-1-a- Y X7K; forA>\,.

i=1

Assumption (Qo(A1)) guarantees that

o0
D> A5 |K;| < oo forall A> N

i=1

and hence Fj is differentiable on [A;, c0) with

oC
Fi(A) =1+ ;ZA-ijj for A > ;.
=1
In view of the hypothesis that (Kn)nen—{o} is nonpositive and not eventually iden-
tically zero, we can see that Fy is strictly increasing on the interval [A1,00).
As Fo(A1) = Fo(Xo) = 0, it follows from Rolle’s theorem that F3(&) = 0 for some
£ with Ay < § < Ag. Since FY is strictly increasing on [€,00), F} is positive on the
interval (€, ). This gives, in particular, that Fj(A) > 0, i.e.

1 o~ _;
il =5 g
1+/\0§1)~0 jK; > 0.
Finally, by taking into account the fact that (Kr)nen—{o} is nonpositive, we im-
mediately see that Ag has the property (Po())), which completes our proof.

Proof of Lemma 3. (I). Let us consider the case where @ = 0. Then the
characteristic equation (*) takes the form

(%)’ (A=1) (1 + i,\—je,-) = i,\-fffj.

J=l
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From the hypothesis that (K. n)neN-{0} i nonpositive and not eventually identically
zero it follows that

oo
ZKj < 0.
=1

Consequently, A = 1 cannot be a root of (*)'.
(IT)- Assume that (x)' has a positive root p with g > 1. Then

(-1 (1 + Zu—jGj) = Zp‘jKj.
i=1

=1

In view of the fact that (Gn)neN_{g} is nonpositive and because of the assumption

(Hy), we get
1+ p9G; 21+ Gi=1-3"|g;| > 0.
i=1 j=1 j=1
Thus,

(r—1) (1 + f:prfc,-) >0.

=1

On the other hand, since (Kn)nen—{o} is nonpositive and not eventually identically
zero, we have

ke .
> wE; <.
j=1

We have thus arrived at a contradiction.
(III). A particular consequence of assumption (Hg) is that

oo
(4.24) D i1K;| < .

=1

Assumption (Hs) and (4.24) imply, in particular, that
o0 o0
Y IGil<oo and Y |Kj| < oo,
j=1 j=1

(Note that the first of the these facts can also be obtained from (Hg).) Thus, we
can immediately conclude that

A77|Gj] < 0o and A7 |K;| <o, forall A>1.
7 3

=1 i=1
So, the formula

FA)=O-1) (1 +i)\‘jG,~) —i— iA‘J’K,- for A>1

F=1 j=1
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introduces a real-valued function F' on the interval [1,00). From (Hs) and (4.24) it
follows that

oo o
D> X 7|6l <0 and D A7j|K;l < oo, forall A>1
=1 j=1
and consequently the function F is differentiable on [1,00) with

FA) =1+ A [1— (1— %) j} Gj+%ZA_ijj for A > 1.
i=1

i=1

Furthermore, by the hypothesis that (Gn)nen-{o} and (Kn)neN—{o} are nonposi-
tive and (Kn),,eN_{g} is not eventually identically zero, we obtain for A > 1

F'(A)) = 1+ E"" N 1._1 Eoo Ad 'G~+l EOO A,
- ) b IG5 A T8
j=1 =1

=1
oo . 1 o0 iy 1 oo .
= =276+ (1-3) S A1G1 - £ oA K
i=1 j=1 i=1

oo . 1 oo o
> 1—5_;/\ 71651 = 5 DAk
j= j=1

o0 oo
> 1-Y 1G5 - i K-
=1 =1
Hence, by assumption (Hs), we find

F'(A) >0 for every A > 1.

This implies that F is strictly increasing on the interval (1,00). Since (En)nen—{o}
is nonpositive, assumption (H;) means that

(4.25) F{1y> 0.
Thus, the characteristic equation () cannot have roots in the interval (1,00).

(IV). Assumption (H7) means that (4.25) is true. Furthermore, assumption
(Hg) guarantees, in particular, that

(e <] . oo i
E 77|Gj| <oo and E 77 |K;| < 00
=1 =1

and consequently

oo oo
Z'\_j|Gj|<°° and Z-‘\_lejI<OO, for all A > .

=1 i=1

So, the formula

FA)=(A-1) (l'f'i/\_j(;j) ha—i)\_jK,- for A >~

J=1 F=1
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defines a real-valued function F on the interval [y,c0). From assumption (Hs) it

follows that
29 . e -
Y x751Gi < oo and Y AFj|K | < 0o, forall A4,
j=1 §=1

which ensures that the function F is differentiable on [v, o0) with
oC o0
’ 1 1 .
F)=1+Y X7 [1 - (1 — X) j] Gi+y Y ATiK; for Az
j=1 i=1
By using the hypothesis that (Gn)nen—{oy and (Kn)neN—{o} are nonpositive and

(Ka)neN—{o} is not eventually identically zero, we can easily verify that F’ is
strictly increasing on the interval [, 1]. Consequently,

(4.26) F is strictly convex on [y, 1].

Furthermore, we take into account the fact that (Gr)nen—{o} and (Kp)nen—{o0}
are nonpositive to conclude that assumption (Hg) means that

(4.27) F(y) >0,
while assumption (Hjp) means that
(4.28) Fle+1-4) <.

A particular consequence of (4.27) is that A = + is not a root of (*). Similarily,
(4.28) guarantees, in particular, that A = a + 1 — 4 is not a root of (*). Moreover,
from (4.25), (4.26) and (4.28) it follows that, in the interval (a + 1 — 4, 1], (%)
has a unique root. Finally, (4.26), (4-27) and (4.28) ensure that, in the interval
(7,e+1—6), (*) has also a unique root.

The lemma has now been proved.

Proof of Lemma 4. (I) and (II). Let us assume that the characteristic equation
(*)o admits a positive root y. Then

L— 1——a=2;.a'jKj.
=1
Since (Ky)nen-{o} iS nonpositive and not eventually identically zero, we always
have

20 .

Z,U._JKJ‘ <0.

i=1
So, we must have p — 1 —a <0, i.e. 4 < a+ 1. This shows Part (IT). Moreover, it
follows that a + 1 > 0, namely @ > —1, and hence Part (I) has been established.

(III). From assumption (Hsg)o it follows, in particular, that
777 1K | < oo,
7=1

which guarantees that

o0
S AT IK;| < oo forall A 1.

=1
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Hence, we can define the real-valued function Fy on [, 0) by the formula

o0
FoA)=A-1-a—> X7K; fora>1.
j=1
By (Hg)o, we see that

oo
D XKy < oo forall A >y
=1

and consequently Fj is differentiable on [, 00) with

1o~ _;
’ —_— e y .
W) =1+ XJZ:;A IjK; for A> 1.
Furthermore, the hypothesis that (Kn)nGN—{D} is nonpositive and not eventually
identically zero ensures that Fy is strictly increasing on the interval [, 00). So,

(4.29) Fy is strictly convex on [y, c0).

Now, as (Kn)neN_{o} is nonpositive, assumption (Hg)o means that
(4.30) Fo(v) >0,

while assumption (H;g)g means that

(4.31) Fole+1-46) <.

From (4.30) it follows, in particular, that A = + is not a root of (*)o, while (4.31)
ensures, in particular, that A = a+1 —§ is not a root of (*)o. Next, by taking into
account the fact that (Kn)nEN—{O} is nonpositive and not eventually identically
zero, we see that

(4.32) Fo(a+1) > 0.

Because of (4.29), (4.31) and (4.32), we conclude that, in the interval (a+1-4,a+1),
(*)o has a unique root. Moreover, (4.29), (4.30) and (4.31) guarantee that, in the
interval (v,a+ 1 — ), (x)o admits also a unique root.

We have thus completed the proof of our lemma.
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